精英家教网 > 高中数学 > 题目详情
(2012•资阳一模)在等比数列{an}中,0<a1<a4=1,使不等式(a1-
1
a1
)+(a2-
1
a2
)+…+(an-
1
an
)≤0
成立的最大自然数是(  )
分析:在等比数列{an}中,由0<a1<a4=1,知q>1,故n>4时,an-
1
an
>0
.由a4=a1q3=1,知a1=
1
q3
,故a7=a1 •q6=q3=
1
a1
,同理得a6=a1q5=q2=
1
a2
a5=a1q4=q=
1
a3
a4=1=
1
a4 
,所以(a1-
1
a1
)+(a2-
1
a2
)+(a3-
1
a3
)+(a4-
1
a4
)
+(a5-
1
a5
)+(a6-
1
a6
)+(a7-
1
a7
)
=0,由此能求出n的最大值.
解答:解:∵在等比数列{an}中,0<a1<a4=1,∴q>1,
∴n>4时,an-
1
an
>0

∵a4=a1q3=1,∴a1=
1
q3

a7=a1 •q6=q3=
1
a1

a2=a1•q=
1
q2

a6=a1q5=q2=
1
a2

a3=a1q2=
1
q3
q2=
1
q

a5=a1q4=q=
1
a3

a4=1=
1
a4 

(a1-
1
a1
)+(a2-
1
a2
)+(a3-
1
a3
)+(a4-
1
a4
)
+(a5-
1
a5
)+(a6-
1
a6
)+(a7-
1
a7
)
=0,
∴n≤7时,(a1-
1
a1
)+(a2-
1
a2
)+…+(an-
1
an
)≤0

所以n的最大值为7.
故选C.
点评:本题考查数列和不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•资阳一模)设函数f(x)=
21-x,x≤0
f(x-1),x>0
若关于x的方程f(x)=x+a有且只有两个实根,则实数a的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知向量
a
b
为单位向量,且它们的夹角为60°,则|
a
-3
b
|
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)若a>b,则下列命题成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=a-
2
2x+1
是奇函数,其反函数为f-1(x),则f-1(
3
5
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知函数f(x)=2lnx-x2+ax,a∈R.
(1)当a=2时,求函数f(x)的图象在x=1处的切线的方程;
(2)若函数f(x)-ax+m=0在[
1e
,e]
上有两个不等的实数根,求实数m的取值范围;
(3)若函数f(x)的图象与x轴交于不同的点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(px1+qx2)<0(其中实数p,q满足0<p≤q,p+q=1)

查看答案和解析>>

同步练习册答案