(14分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
组成数对(
,并构成函数![]()
(Ⅰ)写出所有可能的数对(
,并计算
,且
的概率;
(Ⅱ)求函数
在区间[
上是增函数的概率.
(1)
(2)![]()
【解析】(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4) ,共有15个。………………………………4分
设事件“
,且
”为A,
则事件A包含的基本事件有8个, ………………………………… 6分
所以P(A)=
。
……………………………………………8分
(Ⅱ)设事件“
在区间
上为增函数”为B,
因函数
的图象的对称轴为
且
>0,
所以要使事件B发生,只需
。…………………………10分
由满足题意的数对有(1,-1)、(2,-1)、(2,1)、(3,-1)、(3,1),共5个,
…………………………12分
所以,P(B)=
.
…………………………14分
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com