如图,函数f(x)=x+的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N.![]()
(1)证明:|PM|·|PN|为定值;
(2)O为坐标原点,求四边形OMPN面积的最小值.
科目:高中数学 来源: 题型:解答题
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线
的准线方程和焦点坐标
;
(2)若
,求证:直线
恒过定点;
(3)当
时,设圆
,若存在且仅存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分16分)如图:为保护河上古桥
,规划建一座新桥
,同时设立一个圆形保护区,规划要求,新桥
与河岸
垂直;保护区的边界为圆心
在线段
上并与
相切的圆,且古桥两端
和
到该圆上任一点的距离均不少于80
,经测量,点
位于点
正北方向60
处,点
位于点
正东方向170
处,(
为河岸),
.![]()
(1)求新桥
的长;
(2)当
多长时,圆形保护区的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
(
)过点(2,0),且椭圆C的离心率为
.
(1)求椭圆
的方程;
(2)若动点
在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.求直线
是否恒过定点,若果是则求出该定点的坐标,不是请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com