【题目】在直角坐标坐标系
中,曲线
的参数方程为
(
为参数),以直角坐标系的原点为极点,以
轴的正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)求曲线
的普通方程;
(2)若
与曲线
相切,且
与坐标轴交于
两点,求以
为直径的圆的极坐标方程.
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到如表(单位:人):
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为
市使用共享单车情况与年龄有关?
(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.
②将频率视为概率,从
市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设曲线
交于点
,曲线
与
轴交于点
,求线段
的中点到点
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题中,其中正确命题的序号为____________.
① 函数
是周期为
的偶函数;
② 若
是第一象限的角,且
,则
;
③
是函数
的一条对称轴方程;
④ 在
内方程
有3个解
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上有两定点A、B,该平面上一动点P与两定点A、B的连线的斜率乘积等于常数
,则动点P的轨迹可能是下面哪种曲线:①直线;②圆;③抛物线;④双曲线;⑤椭圆_____(将所有可能的情况用序号都写出来)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com