【题目】已知函数f(x)=xln x-(x-1)(ax-a+1)(a∈R).
(1)若a=0,判断函数f(x)的单调性;
(2)若x>1时,f(x)<0恒成立,求a的取值范围.
【答案】见解析
【解析】(1)若a=0,f(x)=xln x-x+1,f′(x)=ln x.
∴当x∈(0,1)时,f′(x)<0,f(x)为减函数;
当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.
(2)由题意知f(x)=xln x-(x-1)(ax-a+1)<0在(1,+∞)上恒成立.
①若a=0,则f(x)=xln x-x+1,f′(x)=ln x>0在x∈(1,+∞)上恒成立,∴f(x)为(1,+∞)上的增函数,∴f(x)>f(1)=0,即f(x)<0不成立.∴a=0不合题意.
②若a≠0,∵x>1,∴只需
=ln x-
<0在(1,+∞)上恒成立.
记h(x)=ln x-
,x∈(1,+∞),
则h′(x)=-
=-
,x∈(1,+∞).
由h′(x)=0,得x1=1,x2=
.
若a<0,则x2=
<1=x1,
∴h′(x)>0在(1,+∞)上恒成立,故h(x)为增函数,
∴h(x)>h(1)=0,不合题意.
若0<a<
,x∈
时,h′(x)>0,h(x)为增函数,
∴h(x)>h(1)=0,不合题意,
若a≥
,x∈(1,+∞)时,h′(x)<0,h(x)为减函数,
∴h(x)<h(1)=0,符合题意.
综上所述,若x>1时,f(x)<0恒成立,则a≥
.
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通项公式;
(2) 求证:
+
+…+
<1对任意正整数m都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.直线
过点
.
(1)若直线
与曲线
交于
两点,求
的值;
(2)求曲线
的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一片森林原面积为
.计划从某年开始,每年砍伐一些树林,且每年砍伐面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的
.已知到今年为止,森林剩余面积为原面积的
.
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)为保护生态环境,今后最多还能砍伐多少年?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学的
名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐
名同学(乘同一辆车的
名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的
名同学中恰有
名同学是来自于同一年级的乘坐方式共有_______种(有数字作答).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com