精英家教网 > 高中数学 > 题目详情

甲乙两个学校高三年级分别有1100人和1000人,为了了解这两个学校全体高三年级学生在该地区二模考试中的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统汁表,规定考试成绩在[120,150]内为优秀.

(I)试求x,y的值;

(II)由以上统计数据填写右面2×2列联表,若按是否优秀来判断,是否有97.5%的把握

认为两个学校的数学成绩有差异。

(III)根据抽样结果分别估计甲校和乙校的优秀率,若把频率视为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望。

附:

 

【答案】

(I)x=6,y=7(II)故有97.5%的把握认为,这两个学校的数学成绩有差异.

(III)E=3×=

【解析】(I)先由分层抽样方法可知各层在样本中的占比与各层在总体中的占比相等。可求出x=6,y=7.

(II)由列联表知借助公式可求出的值确定这个结论的可信度。

(III)由题意知随机变量可能取的值有0,1,2,3.然后把每一个值对应的概率求出来,

列出分布列,进而根据期望公式每一个值与对应概率积之和求出数学期望

(I)由分层抽样知,甲校抽取了55人成绩,乙校抽取了50人的成绩.所以, x=6,y=7

(II)由以上统计数据填写右面2X2列联表如下:

 

甲校

乙校

总计

优秀

10

20

30

非优秀

45

30

75

总计

55

50

105

因为.

故有97.5%的把握认为,这两个学校的数学成绩有差异.…………8分

(III)由题意,可知:甲校的优秀率为,乙校的优秀率为,

由题意可知,随机变量§=0,1,2,3,且

 

      从而求得的分布列为:     

0

1

2

3

P

的数学期望E=3×=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 2 3 10 15 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 1 2 9 8 10 10 y 3
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
  甲校 乙校 总计
优秀      
非优秀      
总计      
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(k2≥k0 0.10 0.025 0.010
k0 2.706 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州一模)甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 3 4 8 15
分组 [110,120) [120,130) [130,140) [140,150]
频数 15 x 3 2
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 8 9
分组 [110,120) [120,130) [130,140) [140,150]
频数 10 10 y 3
(Ⅰ)计算x,y的值.
甲校 乙校 总计
优秀
非优秀
总计
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率.
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异.
参考数据与公式:
由列联表中数据计算K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

临界值表
P(K≥k0 0.10 0.05 0.010
k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两个学校高三年级分别有1100人和1000人,为了了解这两个学校全体高三年级学生在该地区二模考试中的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统汁表,规定考试成绩在[120,150]内为优秀.
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 2 3 10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(I)试求x,y的值;
(II)统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩的平均分.(精确到0.1).
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
甲校 乙校 总计
优秀
非优秀
总计
附:
K
2
 
=
n(ad-bc
)
2
 
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样的方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下,规定考试成绩[120,150]内为优秀,

甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 2 3 10 15
分组 [110,120) [120,130) [130,140) [140,150]
频数 15 10 y 3
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150]
频数 10 10 y 3
(1)计算x,y的值;
(2)由以上统计数据填写右面2×2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
(3)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望.
甲校 乙校 总计
优秀
非优秀
总计
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)


P(K2>K) 0.10 0.025 0.010
K2 2.706 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
                                                  甲校
分组 [70,80) [80,90) [90,100) [100,110)
频道 2   10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校
分组 [70,80) [80,90) [90,100) [100,110)
频道 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(Ⅰ)计算x,y的值.
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
  甲校 乙校 总计
优秀      
非优秀      
总计      
(Ⅲ)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:K2=
nad-bc2
a+bc+da+cb+d

P(k2>k0 0.10 0.025 0.010
K 2.706 5.024 6.635

查看答案和解析>>

同步练习册答案