精英家教网 > 高中数学 > 题目详情

【题目】《中华人民共和国民法总则》(以下简称《民法总则》)自2017101日起施行.作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间上,年龄的频率分布及了解《民法总则》的入数如下表:

年龄

频数

5

5

10

15

5

10

了解《民法总则》

1

2

8

12

4

5

1)填写下面列联表,并判断是否有的把握认为以45岁为分界点对了解《民法总则》政策有差异;

年龄低于45岁的人数

年龄不低于45岁的人数

合计

了解

不了解

合计

2)若对年龄在的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为,求随机变量的分布列和数学期望.

参考公式和数据:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1)2×2列联表

年龄低于45岁的人数

年龄不低于45岁的人数

合计

了解

a=3

c=29

32

不了解

b=7

d=11

18

合计

10

40

50

没有99%的把握认为以45岁为分界点对了解民法总则政策有差异.
(2)X的分布列是

X

0

1

2

3

P

;

【解析】

(1)利用表格数据,根据联列表利用公式求解即可.


(2)通过X的取值,求出概率,得到分布列,然后求解期望即可.

(1)2×2列联表

年龄低于45岁的人数

年龄不低于45岁的人数

合计

了解

a=3

c=29

32

不了解

b=7

d=11

18

合计

10

40

50

,

所以没有99%的把握认为以45岁为分界点对了解民法总则政策有差异.
(2)X所有可能取值有0123

;;

;;

所以X的分布列是

X

0

1

2

3

P

所以X的期望值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方形被剖分为4个正方形,剖分图的边数为12.若一个正方形被剖分为2005个凸多边形,试求剖分图中边数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,则的一个充分条件是(

A.存在一条直线

B.存在一条直线

C.存在一个平面,满足

D.存在两条异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正数,直线y=x﹣2a+1与曲线y=ex+b﹣1相切,则的最小值为(  )

A. 9 B. 7 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,分别是的中点.

1)求证:四点共面;

2)求证:平面平面

3)若分别为的中点,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.

1)求一天内被感染人数为的概率的关系式和的数学期望;

2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.

i)求数列的通项公式,并证明数列为等比数列;

ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取

(结果保留整数,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知.

(1)求角C的值;

(2)若c=2,且△ABC的面积为,求a,b.

查看答案和解析>>

同步练习册答案