设F1、F2分别为椭圆C:
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线
=1具有类似特性的性质并加以证明.
|
解:(1)椭圆C的焦点在x轴上,由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2. 又点A(1, ∴c2=a2-b2=1. ∴椭圆C的方程为 (2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足:x= ∴x1=2x+1,y1=2y. ∴ (3)类似的性质为:若M、N是双曲线 又设点P的坐标为(x,y), 由kPM= 将y2= |
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com