精英家教网 > 高中数学 > 题目详情

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图

(1)补全上面的频率分布直方图(用阴影表示);

(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);

①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;

②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?

参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.

【答案】(1)见解析;(2)①0.9544863200

【解析】

1)由频率分布图求出[95105)的频率,由此能作出补全频率分布直方图;

2)求出质量指标值的样本平均数、质量指标值的样本方差;

由(2)知ZN100104),从而求出P79.6Z120.4),注意运用所给数据;

设这种产品每件利润为随机变量EX),即可求得EX

1)由频率分布直方图得:[95105)的频率为:1﹣(0.006+0.026+0.022+0.008)×100.038,补全上面的频率分布直方图(用阴影表示):

质量指标值的样本平均数为:

80×0.06+90×0.26+100×0.38+110×0.22+120×0.08100

质量指标值的样本方差为

S2=(﹣202×0.06+(﹣102×0.26+0×0.38+102×0.22+202×0.08104

2由(1)知ZN100104),从而P79.6Z120.4)=P1002×10.2Z100+2×10.2)=0.9544

知一件产品的质量指标值位于区间(79.6120.4)的概率为0.9544

该企业的年利润是EX100000[0.9544×10﹣(10.9544)×20]863200

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为为参数以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,且圆心C在直线l上.

求直线l的直角坐标方程及圆C的极坐标方程;

是直线l上一点,是圆C上一点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面为等边三角形,与平面所成角的正切值为.

(Ⅰ)证明:平面

(Ⅱ)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心是坐标原点,它的短轴长为,一个焦点为,一个定点,且,过点的直线与椭圆相交于两点..

1)求椭圆的方程及离心率.

2)如果以为直径的圆过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆经过 两点,且圆心在直线上.

(1)求圆的标准方程;

(2)过圆内一点作两条相互垂直的弦,当时,求四边形的面积.

(3)设直线与圆相交于两点, ,且的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex有两个极值点.

(1)求实数a的取值范围;

(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:

愿意购买这款电视机

不愿意购买这款电视机

总计

40岁以上

800

1000

40岁以下

600

总计

1200

(1)根据图中的数据,试估计该款电视机的平均使用时间;

(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;

(3)若按照电视机的使用时间进行分层抽样,从使用时间在的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在内的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示

(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;

(2)甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

使用寿命

材料类型

个月

个月

个月

个月

总计

如果你是甲公司的负责人,你会选择采购哪款新型材料?

参考数据:.参考公式:回归直线方程为,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝国庆节,某中学团委组织了歌颂祖国,爱我中华知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[4050)[5060)[90100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

同步练习册答案