精英家教网 > 高中数学 > 题目详情
椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点。
(1)若,求k的值;
(2)求四边形AEBF面积的最大值。
解:(1)依题设得椭圆的方程为
直线的方程分别为
如图,设
其中
满足方程
  ①


由D在AB上知,得
所以
化简得
解得
(2)根据点到直线的距离公式和①式知,点的距离分别为



所以四边形的面积为





,即当时,上式取等号
所以S的最大值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆中心在坐标原点,焦点在坐标轴上,A、B是顶点,F是左焦点;当BF⊥AB时,此类椭圆称为“黄金椭圆”,其离心率为
5
-1
2
.类比“黄金椭圆”可推算出“黄金双曲线”的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆中心在坐标原点,F为左焦点,当
FB
AB
时,其离心率为
5
-1
2
,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在坐标原点,焦点在x轴上,离心率e=
3
2
,若椭圆与直线x+y+1=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆中心在坐标原点,A(2,O)是它的一个顶点,且长轴是短轴的2倍,
(1)求椭圆的标准方程;
(2)若椭圆的焦点在x轴,设直线y=kx(k>0)与椭圆相交于E、F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

同步练习册答案