已知数列
是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
。数列
满足
,
为数列
的前n项和。
(I)求;
d和
;
(II)若对任意的
,不等式
恒成立,求实数
的取值范围。
科目:高中数学 来源: 题型:
已知数列
是各项均不为0的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前
项和.
(1)求
,
和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届广东省“十校”高三第一次联考文科数学试卷(解析版) 题型:解答题
已知数列
是各项均不为0的等差数列,公差为
,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前
项和.
(1)求数列
的通项公式
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数
,使得
成等比数列?若存在,求出所有![]()
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届广东省汕头市高二10月月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知数列
是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前
项和.
(1)求
、
和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三4月教学质量检测(二模)理科数学试卷(解析版) 题型:解答题
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列
是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前n项和.
(1)求
、
和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题
(本小题满分14分)
已知数列
是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前n项和.
(1)求
、
和
;
(2)若对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数![]()
,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com