精英家教网 > 高中数学 > 题目详情

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足。数列满足为数列的前n项和。

(I)求;d和

(II)若对任意的,不等式恒成立,求实数的取值范围。

 

【答案】

(I)在中,令

解得     ……………………………………3分

(II)(1)当为偶数时,要使不等式恒成立,即需不等式

恒成立。

,等号在n=2时取得。

此时需满足<25.   ……………………………………8分

(2)当n为奇数时,要使不等式恒成立,即需不等式

恒成立.

是随n的增大而增大,取得最小值-6.

此时需满足<-21.  …………………………………………………10分

综合(1)(2)可得<-21

的取值范围是.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列是各项均不为0的等差数列,公差为为其前项和,且满足.数列满足为数列的前项和.

(1)求

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东省“十校”高三第一次联考文科数学试卷(解析版) 题型:解答题

已知数列是各项均不为0的等差数列,公差为为其前n项和,且满足,.数列满足,为数列的前项和.

(1)求数列的通项公式

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有

的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届广东省汕头市高二10月月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知数列是各项均不为的等差数列,公差为为其前项和,且满足.数列满足为数列的前项和.

(1)求

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有

的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三4月教学质量检测(二模)理科数学试卷(解析版) 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列是各项均不为的等差数列,公差为为其前项和,且满足

.数列满足为数列的前n项和.

(1)求

(2)若对任意的,不等式恒成立,求实数的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题

(本小题满分14分)

已知数列是各项均不为的等差数列,公差为为其前项和,且满足

.数列满足为数列的前n项和.

(1)求

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有

的值;若不存在,请说明理由.

 

 

查看答案和解析>>

同步练习册答案