精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台ABC﹣A1B1C1中,平面α过点A1 , B1 , 且CC1∥平面α,平面α与三棱台的面相交,交线围成一个四边形.
(Ⅰ)在图中画出这个四边形,并指出是何种四边形(不必说明画法、不必说明四边形的形状);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1 , 平面BB1C1C⊥平面ABC,二面角B1﹣AB﹣C等于60°,求直线AB1与平面α所成角的正弦值.

【答案】解:(Ⅰ)围成的四边形如图所示,它是平行四边形;(Ⅱ)∵AB⊥BC,平面BB1C1C⊥平面ABC,
且平面BB1C1C⊥平面ABC=BC,AB∩平面ABC
∴AB⊥平面BB1C1C,
∴AB⊥BB1 , ∠B1BC是二面角B1﹣AB﹣C的平面角,
∴∠B1BC=60°,
以BC,AB为x,y轴,B为原点建立如图直角坐标系B﹣xyz,
由已知CC1∥α,B1M=α∩平面BB1C1C,知B1M∥CC1
又由台体的性质,BC∥B1C1
∴MCC1B1是平行四边形,
∴MC=B1C1=3,M是BC的中点,
又BB1=CC1 , 则B1到平面ABC的距离,h=
同理N是AC的中点,
A(0,﹣8,0),B(0,0,0),B1(﹣ ,0, ),M(﹣3,0,0),
=( ,0, ), =(0,﹣4,0), =(﹣ ,8, ).
设平面α的法向量为 =(x,y,z),则
得一个法向量是 =( ,0,﹣1),
设直线AB1与平面α所成角为θ,则sinθ=| |=
∴直线AB1与平面α所成角的正弦值为

【解析】(Ⅰ)围成的四边形如图所示,它是平行四边形;(Ⅱ)以BC,AB为x,y轴,B为原点建立如图直角坐标系B﹣xyz,求出平面α的法向量,利用向量的夹角公式,即可求直线AB1与平面α所成角的正弦值.
【考点精析】认真审题,首先需要了解平面的基本性质及推论(如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线),还要掌握空间角的异面直线所成的角(已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;

(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在(]n=1,2,3,4,5)时,日平均派送量为50+2n单.若将频率视为概率,回答下列问题:

①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列,数学期望及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由。

(参考数据:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函数关系式为: 乙方案的函数关系式为:(Ⅱ)①见解析,②见解析.

【解析】

由题意可得甲方案中派送员日薪(单位:元)与送单数的函数关系式为: 乙方案中派送员日薪(单位:元)与送单数的函数关系式为:.

①由题意求得X的分布列,据此计算可得.

②答案一:由以上的计算可知,远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.

答案二:由以上的计算结果可以看出,,所以小明应选择乙方案.

Ⅰ)甲方案中派送员日薪(单位:元)与送单数的函数关系式为:

乙方案中派送员日薪(单位:元)与送单数的函数关系式为:

①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:

单数

52

54

56

58

60

频率

0.2

0.3

0.2

0.2

0.1

所以的分布列为:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列为:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.

答案二:由以上的计算结果可以看出,,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.

【点睛】

本题主要考查频率分布直方图,数学期望与方差的含义与实际应用等知识,意在考查学生的转化能力和计算求解能力.

型】解答
束】
20

【题目】已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或﹣1
D.2或1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;

(2)规定80分以上为优分(含80分)请你根据已知条件作出2×2列联表并判断是否有90%以上的把握认为“数学成绩与性别有关”.

附表及公式:

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:每题只选一个选项,答对得5分,不答或答错得零分.某考生已确定有7道题的答案是正确的,其余题中:有一道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.试求出该考生:

Ⅰ)得50分的概率;

Ⅱ)所得分数的数学期望(用小数表示,精确到0.01k^s*5#u)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(  )

A. 没有充足的理由认为课外阅读量大与作文成绩优秀有关

B. 0.5%的把握认为课外阅读量大与作文成绩优秀有关

C. 99.9%的把握认为课外阅读量大与作文成绩优秀有关

D. 99.5%的把握认为课外阅读量大与作文成绩优秀有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

同步练习册答案