【题目】如图,在四棱锥
中,平面
⊥平面
,
,
是等边三角形,
,
.
(Ⅰ)证明:平面
⊥平面
;
(Ⅱ)求二面角
的余弦值.
![]()
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知
,在直角坐标系
中,直线
的参数方程为
(
为参数);在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程是
.
(Ⅰ)求证:
;
(Ⅱ)设点
的极坐标为
,
为直线
,
的交点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个函数:(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y=
,其中定义域与值域相同的函数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过左焦点F且垂直于x轴的直线与椭圆
相交,所得弦长为1,斜率为
(
)的直线
过点
,且与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在
轴上是否存在点
,使得无论
取何值,
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C与x轴相切,圆心C在射线3x﹣y=0(x>0)上,直线x﹣y=0被圆C截得的弦长为2 ![]()
(1)求圆C标准方程;
(2)若点Q在直线l1:x+y+1=0上,经过点Q直线l2与圆C相切于p点,求|QP|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是( ) ![]()
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点. ![]()
(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com