精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面⊥平面

是等边三角形, .

(Ⅰ)证明:平面⊥平面

(Ⅱ)求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(I)证明:在中,利用勾股定理得到,进而即可证明平面,即可得到结论;

(II)根据题意,建立空间直角坐标系,求解平面的法向量, 确定平面的一个法向量为,利用向量的夹角公式,即可求解二面角的余弦值.

试题解析:(I)证明:在中,由于, , ,

,故.

故平面平面

II法1:如图建立空间直角坐标系, , , , .

设平面的法向量,

, 则.

易得平面的一个法向量为

则所求余弦值为.

法2:由(I)知

则过点,连接

为线段的中点,则,

,则为二面角

的平面角,

在直角三角形中,

,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个函数:(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定义域与值域相同的函数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点F且垂直于x轴的直线与椭圆相交,所得弦长为1,斜率为 ()的直线过点,且与椭圆相交于不同的两点. 

(Ⅰ)求椭圆的方程;

(Ⅱ)在轴上是否存在点,使得无论取何值, 为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C与x轴相切,圆心C在射线3x﹣y=0(x>0)上,直线x﹣y=0被圆C截得的弦长为2
(1)求圆C标准方程;
(2)若点Q在直线l1:x+y+1=0上,经过点Q直线l2与圆C相切于p点,求|QP|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在定义域内既是奇函数又是减函数的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

同步练习册答案