【题目】已知椭圆C:
的离心率为
,长半轴长为短轴长的b倍,A,B分别为椭圆C的上、下顶点,点
.
求椭圆C的方程;
若直线MA,MB与椭圆C的另一交点分别为P,Q,证明:直线PQ过定点.
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,准线为
.已知以
为圆心,半径为4的圆与
交于
、
两点,
是该圆与抛物线
的一个交点,
.
(1)求
的值;
(2)已知点
的纵坐标为
且在
上,
、
是
上异于点
的另两点,且满足直线
和直线
的斜率之和为
,试问直线
是否经过一定点,若是,求出定点的坐标,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
(
都在
轴上方),且
.
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一铁块高温融化后制成一张厚度忽略不计、面积为100dm2的矩形薄铁皮(如图),并沿虚线l1,l2裁剪成A,B,C三个矩形(B,C全等),用来制成一个柱体.现有两种方案:
方案①:以
为母线,将A作为圆柱的侧面展开图,并从B,C中各裁剪出一个圆形作为圆柱的两个底面;
方案②:以
为侧棱,将A作为正四棱柱的侧面展开图,并从B,C中各裁剪出一个正方形(各边分别与
或
垂直)作为正四棱柱的两个底面.
(1)设B,C都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;
(2)设
的长为
dm,则当
为多少时,能使按方案②制成的正四棱柱的体积最大?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,点C是圆上异于A、B的点,PO垂直于圆O所在的平面,且PO=OB
,BC=2,点E在线段PB上,则CE+OE的最小值为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,直线
的极坐标方程为
,现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求直线
的直角坐标方程和曲线
的普通方程;
(2)若曲线
为曲线
关于直线
的对称曲线,点
分别为曲线
、曲线
上的动点,点
坐标为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是
的中点.
![]()
(1)设P是
上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com