精英家教网 > 高中数学 > 题目详情

在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.

(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。

(1)垂直;(2)二面角A-CD-B的正切值为


解析:

如图,(1)垂直。证明如下:设BD的中点为E,连AE,CE。

∵AB=AD∴AE⊥BD。同理CE⊥BD。

∴AE=

∵AC=,∴AC2=AE2+CE2∴∠AEC=90°即AE⊥EC

∴AE⊥平面BCD∵AE平面ABD∴平面ABD⊥平面BCD

(2)作EF⊥CD于F,连结AF。∵AE⊥平面BCD∴AF⊥CD

∴∠AFE就是二面角A-CD-B的平面角,

即二面角A-CD-B的正切值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为(  )
A、
1
3
B、
1
2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在四面体ABCD中,M、N分别是面△ACD、△BCD的重心,则四面体的四个面中与MN平行的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到四面体ABCD(如图2),则在四面体ABCD中,AD与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,截面EFGH平行于对棱AB和CD,且FG⊥GH,试问截面在什么位置时其截面面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外接球的半径为
3
3

查看答案和解析>>

同步练习册答案