精英家教网 > 高中数学 > 题目详情
已知椭圆C方程为
x2
4
+
y2
3
=1
,直线l:y=
x
2
+m
与椭圆C交于A、B两点,点P(1,
3
2
)

(1)求弦AB中点M的轨迹方程;
(2)设直线PA、PB斜率分别为k1、k2,求证:k1+k2为定值.
(1)将l:y=
x
2
+m
代入
x2
4
+
y2
3
=1

消去y并整理得4x2+4mx+4m2-12=0,
△=16m2-16(4m2-12)=48(4-m2)>0,
-2<m<2.
x1+x2=-m,x1x2=m2-3,
x0=-
m
2
y0=
3
4
m

∴弦AB中点M的轨迹方程是y=-
3
2
x
在椭圆内部部分.(6分)
(2)设A(x1,y1)B(x2,y2),A、B两点在直线l:y=
x
2
+m

k1+k2=
y1-
3
2
x1-1
+
y2-
3
2
x2-1
=
x1x2+(m-
3
2
)(x1+x2-2)-
x1+x2
2
x1x2-(x1+x2)+1

=
m2-3+(m-
3
2
)(-m-2)+
m
2
m2-3+m+1
=0
(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C方程为x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),椭圆中心在原点,焦点在x轴上.
(1)证明圆C恒过一定点M,并求此定点M的坐标;
(2)判断直线4x+3y-3=0与圆C的位置关系,并证明你的结论;
(3)当m=2时,圆C与椭圆的左准线相切,且椭圆过(1)中的点M,求此时椭圆方程;在x轴上是否存在两定点A,B,使得对椭圆上任意一点Q(异于长轴端点),直线QA,QB的斜率之积为定值?若存在,求出A,B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
4
+
y2
3
=1
,直线l:y=
x
2
+m
与椭圆C交于A、B两点,点P(1,
3
2
)

(1)求弦AB中点M的轨迹方程;
(2)设直线PA、PB斜率分别为k1、k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C与双曲线x2-y2=1共焦点,且下顶点到直线x+y-2=0的距离为
3
2
2

(1)求椭圆C的方程;
(2)若一直线l2:y=kx+m与椭圆C相交于A、B(A、B不是椭圆的顶点)两点,以AB为直径的圆过椭圆的上顶点,求证:直线l2过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省镇江市扬中二中高三(上)1月综合练习数学试卷(解析版) 题型:解答题

已知圆C方程为x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),椭圆中心在原点,焦点在x轴上.
(1)证明圆C恒过一定点M,并求此定点M的坐标;
(2)判断直线4x+3y-3=0与圆C的位置关系,并证明你的结论;
(3)当m=2时,圆C与椭圆的左准线相切,且椭圆过(1)中的点M,求此时椭圆方程;在x轴上是否存在两定点A,B,使得对椭圆上任意一点Q(异于长轴端点),直线QA,QB的斜率之积为定值?若存在,求出A,B坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案