精英家教网 > 高中数学 > 题目详情
4.已知方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示双曲线,则实数k的取值范围为(  )
A.(-∞,0)∪(0,1)∪(1,+∞)B.(1,+∞)C.(0,1)D.(-∞,0)

分析 由双曲线方程的特点可得(k-1)|k|>0,解之可得.

解答 解:若方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示的曲线为双曲线,
则(k-1)|k|>0,
解得k>1,且k≠0,即k∈(1,+∞),
故选:B.

点评 本题考查双曲线的简单性质,得出(k-1)|k|>0是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为$\frac{π}{4}$.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为($\frac{π}{6}$,0),当m取得最小值时,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三内角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=$(3+2x-{x}^{2})^{-\frac{1}{2}}$的单调递减区间是(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平行四边形形ABCD中,已知AB=8,AD=6,∠BAD=$\frac{2π}{3}$,点E,F分别在边BC,DC上,且BC=3BE,DC=λDF,$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,则λ的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.半径为1的圆O内切于正方形ABCD,正六边形EFGHPR内接于圆O,当EFGHPR绕圆心O旋转时,$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范围是(  )
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[-1$-\sqrt{2}$,-1+$\sqrt{2}$]C.[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$$+\sqrt{2}$]D.[$-\frac{1}{2}$-$\sqrt{2}$,$-\frac{1}{2}$+$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果x2+ky2=3表示焦点在y轴上的椭圆,那么实数k的取值范围是(  )
A.(0,+∞)B.(-∞,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平行六面体OABC-O′A′B′C′,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OO′}$=$\overrightarrow{b}$,D是四边形0ABC的中心,则(  )
A.$\overrightarrow{O′D}$=-$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$B.$\overrightarrow{O′D}$=-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$C.$\overrightarrow{O′D}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$D.$\overrightarrow{O′D}$=$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=|ax-2|+lnx-$\frac{1}{x}$,(a≥2)在(0,1]上没有零点.则实数a的取值范围是[2,3).

查看答案和解析>>

同步练习册答案