精英家教网 > 高中数学 > 题目详情
6.某工厂为了解用电量y与气温x℃之间的关系,随机统计了5天的用电量与当天气温,得到如下统计表:
曰期8月1曰8月7日8月14日8月18日8月25日
平均气温(℃)3330323025
用电量(万度)3835413630
$\sum_{i=1}^{5}$xiyi=5446,$\sum_{i=1}^{5}$xi2=4538,$\widehat{b}$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(1)请根据表中的数据,求出y关于x的线性回归方程.据气象預报9月3日的平均气温是 23℃,请预测9月3日的用电量;(结果保留整数)
(2)请从表中任选两天,记用电量(万度)超过35的天数为ξ,求ξ的概率分布列,并求其数学期望和方差.

分析 (1)计算$\overline{x}$、$\overline{y}$,求出回归系数,写出回归方程,利用回归方程计算x=23时$\stackrel{∧}{y}$的值即可;
(2)根据题意知ξ的可能取值,计算对应的概率值,写出ξ的概率分布列,计算数学期望和方差.

解答 解:(1)计算$\overline{x}$=$\frac{1}{5}$×(33+30+32+30+25)=30,
$\overline{y}$=$\frac{1}{5}$×(38+35+41+36+30)=36,
又$\sum_{i=1}^{5}$xiyi=5446,$\sum_{i=1}^{5}$xi2=4538,
∴回归系数为$\widehat{b}$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$=$\frac{5446-5×30×36}{4538-5{×30}^{2}}$=$\frac{23}{19}$,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=36-$\frac{23}{19}$×30=-$\frac{6}{19}$,
∴回归方程为$\stackrel{∧}{y}$=$\frac{23}{19}$x-$\frac{6}{19}$;
当x=23时,$\stackrel{∧}{y}$=$\frac{23}{19}$×23-$\frac{6}{19}$=$\frac{523}{19}$≈27.53,
即预测9月3日的用电量约为28万度;(结果保留整数)
(2)根据题意知,ξ的可能取值为0,1,2;
且P(ξ=0)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,P(ξ=1)=$\frac{{{C}_{3}^{2}•C}_{2}^{1}}{{C}_{5}^{2}}$=$\frac{6}{10}$,P(ξ=2)=$\frac{{C}_{3}^{2}{•C}_{2}^{0}}{{C}_{5}^{2}}$=$\frac{3}{10}$,
所以ξ的概率分布列为

ξ012
P$\frac{1}{10}$$\frac{6}{10}$$\frac{3}{10}$
数学期望为E(ξ)=0×$\frac{1}{10}$+1×$\frac{6}{10}$+2×$\frac{3}{10}$=1.2,
方差为D(ξ)=(0-1.2)2×$\frac{1}{10}$+(1-1.2)2×$\frac{6}{10}$+(2-1.2)2×$\frac{3}{10}$=0.36.

点评 本题考查了离散型随机变量的分布列和数学期望、方差的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在R上定义运算?:x?y=$\frac{x}{2-y}$,若关于x的不等式:(x-a)?(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,则实数a的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={(x,y)|y=x+1},B={(x,y)||x|+|y|=1},则A∩B中的元素个数为(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某次数学测验,12名同学所得分数的茎叶图如图,则这些分数的中位数是(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校开设A类选修课3门,B类选修课3门,一位同学 从中选3门.若要求两类课程中各至少选一门,则不同的选法共有(  )
A.3种B.6种C.9种D.18种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A、B、C的对边分别为a,b,c,若cosA=$\frac{2\sqrt{2}}{3}$,bcosC+ccosB=2,则△ABC外接圆的面积为(  )
A.B.C.D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P为线段BE的中点.

(Ⅰ)求证:CP∥平面DAE;
(Ⅱ)求平面CDE与平面ABE所成的锐二面角θ的余弦值;
(Ⅲ)在线段EC上是否存在一点Q,使直线PQ与平面CDE所成的角的正弦值为$\frac{3\sqrt{6}}{14}$.若存在,求出$\frac{EQ}{EC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2
(Ⅰ)记$F(x)=\frac{f(x)}{g(x)}$,讨论函数F(x)的单调性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定积分${∫}_{-1}^{1}$[xcosx+(x+1)ex]dx的值为e+e-1

查看答案和解析>>

同步练习册答案