精英家教网 > 高中数学 > 题目详情

求经过点A(4,-1),并且与圆相切于点M(1,2)的圆的方程.

 

【答案】

设所求圆的方程为.

由题意得,圆的圆心为C(-1,3),AM的中垂线方程为

直线MC的方程为:

所以所求圆的方程为

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•log2x+t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*
(1)求Sn和an
(2)设数列{bn}的前n项和为Tn,bn=f(an)-1,不等式Tn≤bn的解集,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=b•ax(其中a,b为常数且a>0,a≠1)的反函数的图象经过点A(4,1)和B(16,3).
(1)求a,b的值;
(2)若不等式(
1a
2x+b1-x-|m-1|≥0在x∈(-∞,1]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+
3
y
-2=0与圆x2+y2=4相交于C1的圆心为(3,0),且经过点A(4,1).
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点B、D分别为圆C1、C2上任意一点,求|BD|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒2
2
个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(4,1)和B(0,-3),且圆心C在直线l:2x-y-5=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若过点P(4,-8)直线l与圆C交点M、N两点,且|MN|=4,求直线l的方程.

查看答案和解析>>

同步练习册答案