【题目】已知平面内动点
到两定点
和
的距离之和为4.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)已知直线
和
的倾斜角均为
,直线
过坐标原点
且与曲线
相交于
,
两点,直线
过点
且与曲线
是交于
,
两点,求证:对任意
,
.
科目:高中数学 来源: 题型:
【题目】某企业为打入国际市场,决定从
两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
![]()
其中年固定成本与年生产的件数无关,
为待定常数,其值由生产
产品的原材料价格决定,预计
.另外,年销售
件
产品时需上交
万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产
两种产品的年利润
与生产相应产品的件数
之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为
、
、
三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
![]()
![]()
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P到定点
的距离比它到直线
的距离小2,设动点P的轨迹为曲线C.
求曲线C的方程;
若直线
与曲线C和圆
从左至右的交点依次为A,B,C,D求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程和直线
的普通方程;
(Ⅱ)若直线
与曲线
相交于
,
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,河的两岸分别有生活小区
和
,其中
,
三点共线,
与
的延长线交于点
,测得
,
,
,
,
,若以
所在直线分别为
轴建立平面直角坐标系
则河岸
可看成是曲线
(其中
是常数)的一部分,河岸
可看成是直线
(其中
为常数)的一部分.
![]()
(1)求
的值.
(2)现准备建一座桥
,其中
分别在
上,且
,
的横坐标为
.写出桥
的长
关于
的函数关系式
,并标明定义域;当
为何值时,
取到最小值?最小值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com