精英家教网 > 高中数学 > 题目详情
如图,P1、P2、P是直线l上的不同的三点,且有
P1P
PP2
,则实数λ的取值范围是(  )
分析:由题意可得λ=
P1P
PP2
=-
|P1P|
|PP2
|
,再由|
P1P
|>|
PP2
|,由此求得λ 的取值范围.
解答:解:由题意可得λ=
P1P
PP2
=-
|P1P|
|PP2
|
,再由|
P1P
|>|
PP2
|,∴λ<-1,
故选A.
点评:本题主要考查定比分点分有向线段成的比λ的定义,把它转化为线段的长度比的相反数,数形结合可得实数λ的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为建设好长、株、潭“两型社会”改革实验区,加快二市经济一体化进程,某规划部门在三市的交界处拟建一个大型环保生态公园,并在公园入口处的东南方位建造一个供市民休闲健身的小型绿化广场,如图是步行小道设计方案示意图,其中,Ox,Oy分别表示自西向东,自南向北的两条主干道,设计方案是自主干道交汇点O处修一条步行小道,小道为抛物线y=x2的一段,在小道上依次以点P1(x1y1),P2(x2y2),…,P(xnyn)(n≥10,n∈N*)为圆心,修一系列圆型小道,且这些圆型小道与主干道Ox分别于相切于A1,A2,…,An,…,且任意相邻的两圆彼此外切,若x1=1(单位:百米),且xn+1<xn
(1)记⊙P1,⊙P2,…,⊙Pn,…的半径rn组成的数列为{rn},求通项公式rn
(2)若修建这些圆形小道工程预算总费用为50万元,根据以往施工经验可知,面积为S的圆形小道的实际施工费用为10
πS
万元,试问修建好前n(n≥10,n∈N*)个圆型小道,预算费用是否够用,请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•荆门模拟)如图,已知直线OP1,OP2为双曲线E:
x2
a2
-
y2
b2
=1
的渐近线,△P1OP2的面积为
27
4
,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为
13
2

(1)若P1、P2点的横坐标分别为x1、x2,则x1、x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点M,两焦点F1、F2,若∠F1MF2为钝角,求M点横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图,直线相交于点P.直线l1x轴交于点P1,过点P1x轴的垂线交直线l2于点Q1,过点Q1y轴的垂线交直线l1于点P2,过点P2x轴的垂线交直线l2于点Q2,这样一直作下去,可得到一系列点P1Q1P2Q2,点Pnn=12)的横坐标构成数列

)证明

)求数列的通项公式;

)比较的大小.

 

查看答案和解析>>

科目:高中数学 来源:2004年湖南省高考数学试卷(理科)(解析版) 题型:解答题

如图,直线相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn}.
(Ⅰ)证明
(Ⅱ)求数列{xn}的通项公式;
(Ⅲ)比较2|PPn|2与4k2|PP1|2+5的大小.

查看答案和解析>>

同步练习册答案