精英家教网 > 高中数学 > 题目详情
如图,E、F分别为棱长为1的正方体的棱A1B1、B1C1的中点,点G、H分别为面对角线AC和棱DD1上的动点(包括端点),则下列关于四面体E-FGH的体积正确的是 (  )
分析:根据EF∥AC,可知点G到直线EF的距离为定值则三角形EFG的面积为定值,只需研究点H到平面EFG的距离的取值范围即可得到四面体体积的取值范围.
解答:解:∵E、F分别为棱长为1的正方体的棱A1B1、B1C1的中点
∴EF∥A1C1,而A1C1∥AC
∴EF∥AC
而G为面对角线AC上的动点
∴点G到直线EF的距离为定值则三角形EFG的面积为定值
此四面体体积V=
1
3
S△EFGh,h为点H到面EFG的距离
根据直线D1D与面EFG相交,当点H在D1处h取最大值,在点D处取最小值
∴此四面体体积既存在最大值,也存在最小值
故选A.
点评:本题主要考查了四面体的体积,以及运动中的不变问题,同时考查了了空间想象能力和转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别为棱AA1与CC1的中点,求四棱锥的A1-EBFD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:044

 

已知棱长为a的正方体AC1,如图,EF分别为棱AA1CC1  的中点.求两棱锥A1EBFD1的体积.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

 

已知棱长为a的正方体AC1,如图,EF分别为棱AA1CC1  的中点.求两棱锥A1EBFD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,若E、F分别为正方体ABCD—A1B1C1D1棱AB、AD的中点,平面α过EF截正方体得一六边形.若设平面α与底面所成的二面角为θ,则二面角θ为锐角时的取值区间是_________.

查看答案和解析>>

同步练习册答案