已知函数
,当
时取得极值,且函数
在点
处的切线的斜率为
.
(Ⅰ)求
的解析式;
(Ⅱ)
是坐标原点,
点是
轴上横坐标为
的点,
点是曲线
上但不在
轴上的动点,求
面积的最大值.
科目:高中数学 来源:2011届江西省临川二中高三第二学期第一次模拟考试理科数学 题型:解答题
(本小题满分14分)
已知函数
,当
时,
取得极
小值
.
(1)求
,
的值;
(2)设直线
,曲线
.若直线![]()
与曲线
同时满足下列两个条件:
①直线
与曲线
相切且至少有两个
切点;
②对任意
都有
.则称直线
为曲线
的“上夹线”.
试证明:直线
是曲线
的“上夹线”.
(3)记
,设
是方程
的实数
根,若对于
定义域中任意的
、
,当
,且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西省高三最后一次模拟考试文科数学试卷(解析版) 题型:解答题
已知函数
在
处取得极小值.
(1)求
的值;
(2)若
在
处的切线方程为
,求证:当
时,曲线
不可能在直线
的下方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com