【题目】某大型商场去年国庆期间累计生成
万张购物单,从中随机抽出
张,对每单消费金额进行统计得到下表:
消费金额(单位:元) |
|
|
|
|
|
购物单张数 | 25 | 25 | 30 |
由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过
元的概率;
(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过
元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的
个红球和
个黑球的不透明口袋中,随机摸出
个小球,并记录两种颜色小球的数量差的绝对值
,当
时,消费者可分别获得价值
元、
元和
元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.
科目:高中数学 来源: 题型:
【题目】已知f(x)=3-x,g(x)=log3(x+8).
(1)求f(1),g(1),f[g(1)],g[f(1)]的值;
(2)求f[g(x)],g[f(x)]的表达式并说明定义域;
(3)说明f[g(x)],g[f(x)]的单调性(不需要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,右顶点为
,且
过点
,圆
是以线段
为直径的圆,经过点
且倾斜角为
的直线与圆
相切.
(1)求椭圆
及圆
的方程;
(2)是否存在直线
,使得直线
与圆
相切,与椭圆
交于
两点,且满足
?若存在,请求出直线
的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个点是一个指数函数和一个对数函数的图像的交点,那么称这个点为"好点".下列四个点P1(1,1),P2(1,2),P3(
,
),P4(2,2)中,"好点"有( )个
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,平面
平面
,
,
,
,
为
中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假:
(1)点P到圆心O的距离大于圆的半径是点P在
外的充要条件;
(2)两个三角形的面积相等是这两个三角形全等的充分不必要条件;
(3)
是
的必要不充分条件;
(4)x或y为有理数是xy为有理数的既不充分又不必要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com