【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数,
),以原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
与
的直角坐标方程;
(2)当
与
有两个公共点时,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,某机器人的运动轨道是边长为1米的正三角形ABC,开机后它从A点出发,沿轨道先逆时针运动再顺时针运动,每运动6米改变一次运动方向(假设按此方式无限运动下去),运动过程中随时记录逆时针运动的总路程s1和顺时针运动的总路程s2,x为该机器人的“运动状态参数”,规定:逆时针运动时x=s1,顺时针运动时x=-s2,机器人到A点的距离d与x满足函数关系d=f(x),现有如下结论:
![]()
①f(x)的值域为[0,1];
②f(x)是以3为周期的函数;
③f(x)是定义在R上的奇函数;
④f(x)在区间[-3,-2]上单调递增.
其中正确的有_________(写出所有正确结论的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,点
在椭圆C上.
(1)求椭圆C的方程;
(2)设动直线
与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与
相交两点
,
(两点均不在坐标轴上),且使得直线
,
的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(a∈R).
(Ⅰ)若f(1)=2,求函数y=f(x)-2x在[
,2]上的值域;
(Ⅱ)当a∈(0,
)时,试判断f(x)在(0,1]上的单调性,并用定义证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x-a|+bx(a,b∈R).
(Ⅰ)当b=-1时,函数f(x)恰有两个不同的零点,求实数a的值;
(Ⅱ)当b=1时,
①若对于任意x∈[1,3],恒有f(x)≤2x2,求a的取值范围;
②若a≥2,求函数f(x)在区间[0,2]上的最大值g(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x﹣
sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是( )
A.[﹣1,1]
B.[﹣1,
]
C.[﹣
,
]
D.[﹣1,﹣
]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(k∈R)
(Ⅰ)若该函数是偶函数,求实数k及f(log32)的值;
(Ⅱ)若函数g(x)=x+log3f(x)有零点,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com