【题目】将函数f(x)=
sin2x﹣
cos2x+1的图象向左平移
个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是( )
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x= ![]()
C.
g(x)dx= ![]()
D.函数y=g(x)在区间[
,
]上单调递减
【答案】D
【解析】解:把f(x)=
sin2x﹣
cos2x+1=2sin(2x﹣
)+1的图象向左平移
个单位, 得到函数y=2sin[2(x+
)﹣
]+1=2sin(2x+
)+1的图象,
再向下平移1个单位,得到函数y=g(x)=2sin(2x+
)的图象,
对于A,由于T=
,故正确;
对于B,由2x+
=kπ+
,k∈Z,解得:x=
+
,k∈Z,可得:当k=0时,y=g(x)的图象的一条对称轴为直线x=
,故正确;
对于C,
g(x)dx=
2sin(2x+
)dx=﹣cos(2x+
)|
=﹣(cos
﹣cos
)=
,故正确;
对于D,由2kπ+
≤2x+
≤2kπ+
,k∈Z,解得:kπ+
≤x≤kπ+
,k∈Z,可得函数y=g(x)在区间[
,
]上单调递减,故错误.
故选:D.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】已知向量
=(2cosx,sinx),
=(cosx,2
cosx),函数f(x)=
﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB=
,对任意满足条件的A,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为
(t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=1过椭圆C:
(a>b>0)的短轴端点,P,Q分别是圆O与椭圆C上任意两点,且线段PQ长度的最大值为3. (Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,t)作圆O的一条切线交椭圆C于M,N两点,求△OMN的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某闯关游戏规则是:先后掷两枚骰子,将此试验重复n轮,第n轮的点数分别记为xn , yn , 如果点数满足xn<
,则认为第n轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束.
(I)求第一轮闯关成功的概率;
(Ⅱ)如果第i轮闯关成功所获的奖金数f(i)=10000×
(单位:元),求某人闯关获得奖金不超过1250元的概率;
(Ⅲ)如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量X,求x的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=2|x|﹣4的图象与曲线C:x2+λy2=4恰有两个不同的公共点,则实数λ的取值范围是( )
A.[﹣
,
)
B.[﹣
,
]
C.(﹣∞,﹣
]∪(0,
)
D.(﹣∞,﹣
]∪[
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的左、右焦点为F1 , F2 , 设点F1 , F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足
=
+
,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com