精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项的和为Sn,且S2=10,S5=55,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量的坐标是(  )
A、(2,
1
2
)
B、(-
1
2
,-2)
C、(-
1
2
,-1)
D、(-1,-1)
分析:根据等差数列的前n项和公式,结合S2=10,S5=55,我们构造关于基本量(首项和公差)的方程,解方程即可求出公差d,进行得到向量
PQ
的坐标,然后根据方向向量的定义逐一分析四个答案中的向量,即可得到结论.
解答:解:等差数列{an}的前n项的和为Sn=a1•n+
n(n-1)
2
d

由S2=10,S5=55得:
10=2a1+d
55=5a1+10d
解得:a1=3,d=4
PQ
=(2,an+2-an)=(2,8)
分析四个答案得:(-
1
2
,-2)
是直线PQ的一个方向向量,
故选B
点评:本题考查的知识点是等差数列的前n项和公式,及方向向量,其中由已知条件,构造关于基本量(首项和公差)的方程,解方程即可求出公差d,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案