【题目】已知抛物线
的焦点为
,过焦点
且斜率存在的直线
与抛物线
交于
两点,且
点在
点上方,
点与
点关于
轴对称.
![]()
(1)求证:直线
过某一定点
;
(2)当直线
的斜率为正数时,若以
为直径的圆过
,求
的内切圆与
的外接圆的半径之比.
科目:高中数学 来源: 题型:
【题目】对于在区间
上有意义的函数
,满足对任意的
,
,有
恒成立,厄称
在
上是“友好”的,否则就称
在
上是“不友好”的,现有函数
.
(1)若函数
在区间
(
)上是“友好”的,求实数
的取值范围;
(2)若关于
的方程
的解集中有且只有一个元素,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(简称:
)是定量描述空气质量状况的无量纲指数,空气质量按照
大小分为六级:
为优,
为良,
为轻度污染,
为中度污染,
为重度污染,
为严重污染.下面记录了北京市
天的空气质量指数,根据图表,下列结论错误的是( )
![]()
A. 在北京这
天的空气质量中,按平均数来考察,最后
天的空气质量优于最前面
天的空气质量 B. 在北京这
天的空气质量中,有
天达到污染程度
C. 在北京这
天的空气质量中,12月29日空气质量最好 D. 在北京这
天的空气质量中,达到空气质量优的天数有
天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论:
(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.
(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.
(3)若两个变量的线性相关性越强,则相关系数
的值越接近于1.
(4)对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.
则正确的个数是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出函数
如下表,则f〔g(x)〕的值域为( )
x | 1 | 2 | 3 | 4 |
g(x) | 1 | 1 | 3 | 3 |
x | 1 | 2 | 3 | 4 |
f(x) | 4 | 3 | 2 | 1 |
A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情况都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过点
作抛物线
的两条切线,切点分别为
,直线
的斜率为2.
(1)求抛物线的标准方程;
(2)与圆
相切的直线
,与抛物线交于
两点,若在抛物线上存在点
,使
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:
,
. (其中
为自然对数的底数,
)
(Ⅰ)证明:
;
(Ⅱ)设
,是否存在实数
,使得
对任意
成立?若存在,求出
的一个值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
![]()
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com