(本小题满分14分)
已知函数
,![]()
(Ⅰ)若
,求
的单调区间;
(Ⅱ)在(Ⅰ)的条件下,对
,都有
,求实数
的取值范围;
(Ⅲ)若
在
,
上单调递增,在
上单调递减,求实数
的取值范围。
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知
是函数
的一个极值点,且函数
的图象在
处的切线的斜率为2
.
(Ⅰ)求函数
的解析式并求单调区间.(5分)
(Ⅱ)设
,其中
,问:对于任意的
,方程![]()
在区间
上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.(9分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
=
(
是自然对数的底)
(1)若函数
是(1,+∞)上的增函数,求
的取值范围;
(2)若对任意的
>0,都有
,求满足条件的最大整数
的值;
(3)证明:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知实数a满足0<a≤2,a≠1,设函数f (x)=
x3-
x2+ax.
(Ⅰ)当a=2时,求f (x)的极小值;
(Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.求证:g(x)的极大值小于等于
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com