【题目】如图,在三棱柱
中,面
为矩形,
为
的中点,
与
交于点
.
![]()
(Ⅰ)证明:
;
(Ⅱ)若
,求BC与平面ACD所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥
中,
平面
,
∥
,
∥
,
∥
,
,
,
,
是等腰三角形.
(1)求证:平面
平面
;
(2)求侧棱
上是否存在点
,使得
与平面
所成角大小为
,若存在,求出
点位置,若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)将
图象上所有点向左平行移动
个单位长度,得到
的图象,求
的图象离原点O最近的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒, 以防止害虫的危害, 但采集上市时蔬菜仍存有少量的残留农药, 食用时需要用清水清洗干净, 下表是用清水
(单位:千克) 清洗该蔬菜
千克后, 蔬菜上残留的农药
(单位:微克) 的统计表:
|
|
|
|
|
|
|
|
|
|
|
|
(1)在下面的坐标系中, 描出散点图, 并判断变量
与
的相关性;
(2)若用解析式
作为蔬菜农药残量
与用水量
的回归方程, 令
,计算平均值
与
,完成以下表格(填在答题卡中) ,求出
与
的回归方程.(
精确到
)
![]()
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
|
(3)对于某种残留在蔬菜上的农药,当它的残留量低于
微克时对人体无害, 为了放心食用该蔬菜, 请
估计需要用多少千克的清水清洗一千克蔬菜?(精确到
,参考数据
)
(附:线性回归方程
中系数计算公式分别为;
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球互相独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:
所取球的情况 | 三个球均为红色 | 三个球均为不同色 | 恰有两球为红色 | 其他情况 |
所获得的积分 | 180 | 90 | 60 | 0 |
(1)求一次摸奖中,所取的三个球中恰有两个是红球的概率;
(2)设一次摸奖中,他们所获得的积分为
,求
的分布列及均值(数学期望)
;
(3)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com