【题目】已知函数
.
(1)当
时,求
在
处的切线方程;
(2)令
,已知函数
有两个极值点
,且
,求实数
的取值范围;
(3)在(2)的条件下,若存在
,使不等式
对任意
(取值范围内的值)恒成立,求实数
的取值范围.
【答案】(1)
(2)
(3)![]()
【解析】
(1)求出导数
,计算
,由点斜式写出切线方程并整理成一般式;
(2)求出
,由
,可得
有两个满足题意的不等实根,由二次方程根的分布可得
的范围;
(3)由(2)求出两极值点,确定
的单调性,得
在
单调递增,因此题设中
使不等式成立,取
为最大值
,使之成立即可。化简为不等式
对任意的
恒成立,引入函数
,由导数研究此函数的单调性得不等式成立的条件.
解:
当
时,![]()
时,![]()
在
处的切线方程为![]()
化简得:![]()
对函数求导可得,![]()
令
,可得![]()
,解得
的取值范围为![]()
由
,解得![]()
而
在
上递增,在
上递减,在
上递增
![]()
![]()
在
单调递增
在
上,![]()
,使不等式
对
恒成立
等价于不等式
恒成立
即不等式
对任意的
恒成立
令
,则![]()
①当
时,
在
上递减
不合题意
②当
时,![]()
![]()
若
,即
时,则
在
上先递减
![]()
时,
不能恒成立
若
即
,则
在
上单调递增
恒成立
的取值范围为![]()
科目:高中数学 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次,统计数据如下表所示:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据散点图判断,在推广期内,扫码支付的人
次关于活动推出天数
的回归方程适合用
来表示,求出该回归方程,并预测活动推出第
天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式 | 现金 | 会员卡 | 扫码 |
比例 |
|
|
|
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受
折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受
折优惠的概率为
,享受
折优惠的概率为
,享受
折优惠的概率为
.现有一名顾客购买了
元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设
,
,
,![]()
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Rt△ABC如图(1),∠C=90°,D.E分别是AC,AB的中点,将△ADE沿DE折起到PDE位置(即A点到P点位置)如图(2)使∠PDC=60°.
![]()
(1)求证:BC⊥PC;
(2)若BC=2CD=4,求点D到平面PBE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
的展开图如图二,其中四边形
为边长等于
的正方形,
和
均为正三角形,在三棱锥
中:
![]()
(1)证明:平面
平面
;
(2)若
是
的中点,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com