已知椭圆
过点
,其长轴、焦距和短轴的长的平方依次成等差数列.直线
与
轴正半轴和
轴分别交于点
、
,与椭圆分别交于点
、
,各点均不重合且满足![]()
(1)求椭圆的标准方程;
(2)若
,试证明:直线
过定点并求此定点.
科目:高中数学 来源: 题型:解答题
过直线y=﹣1上的动点A(a,﹣1)作抛物线y=x2的两切线AP,AQ,P,Q为切点.
(1)若切线AP,AQ的斜率分别为k1,k2,求证:k1•k2为定值.
(2)求证:直线PQ过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是离心率为
的椭圆
:
上的一点,斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点不重合.
(1)求椭圆
的方程;
(2)
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知F1、F2分别为椭圆C1:
的上、下焦点,其中F1也是抛物线C2:
的焦点,点A是曲线C1,C2在第二象限的交点,且![]()
![]()
(Ⅰ)求椭圆
1的方程;
(Ⅱ)已知P是椭圆C1上的动点,MN是圆C:
的直径,求
的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为
,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线
,
∥l且
与曲线C的交点A、B满足
;
若存在请求出满足题意的所有直线方程,若不存在请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,直线
的参数方程为
(
为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为
.
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 求直线
被曲线
所截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的中心在原点,其上、下顶点分别为
,点
在直线
上,点
到椭圆的左焦点的距离为
.![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设
是椭圆上异于
的任意一点,点
在
轴上的射影为
,
为
的中点,直线
交直线
于点
,
为
的中点,试探究:
在椭圆上运动时,直线
与圆
:
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为
,点
是点
关于
轴的对称点,过点
的直线交抛物线于
两点。
(1)试问在
轴上是否存在不同于点
的一点
,使得
与
轴所在的直线所成的锐角相等,若存在,求出定点
的坐标,若不存在说明理由。
(2)若
的面积为
,求向量
的夹角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
经过点
,且两焦点与短轴的一个端点构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)动直线
交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
.若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com