精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx,g(x)=ax+
bx
,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点处f(x)与g(x)有公切线.
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.
分析:(Ⅰ)先求出两个函数的导函数,再利用函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点处f(x)与g(x)有公切线对应的等式即可求a、b的值;
(Ⅱ)先设F(x)=f(x)-g(x),再求出其导函数,得出其在(0,+∞)上是减函数且F(1)=0,即可得f(x)与g(x)的大小.
解答:解:(I)由题意:f'(x)=
1
x
,g'(x)=a-
b
x2
,(2分)
∴由题意可得:
a+b=0
a-b=1
?
a=
1
2
b=-
1
2
.(5分)
(11)由(I)可知g(x)=
1
2
(x-
1
x
),令F(x)=f(x)-g(x)=lnx-
1
2
(x-
1
x
)..
∵F'(x)=
1
x
-
1
2
(1+
1
x2
)=-
1
2
(1+
1
x2
-
2
x
)=-
1
2
(1-
1
x
)
2
≤0,(8分)
∴F(x)是(0,+∞)上的减函数,而F(1)=0,(9分)
∴当x∈(0,1)时,F(x)>0,有f(x)>g(x);
当x∈(1,+∞)时,F(x)<0,有f(x)<g(x);
当x=1时,F(x)=0,有f(x)=g(x).(12分)
点评:本题主要考查利用导数求闭区间上函数的最值以及分类讨论思想的运用,主要考查导数的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案