精英家教网 > 高中数学 > 题目详情
12、定义在(-∞,0)∪(0,+∞)上的偶函数f(x)满足xf'(x)>0,对定义域内的x1,x2.若x1>x2,x1+x2>0,则以下结论正确的是(  )
分析:结合已知条件判断函数的单调性,若x1>x2,x1+x2>0,则x1>|x2|,结合偶函数的性质可得.
解答:解:∵xf'(x)>0
当x>0时,f′(x)>0,函数单调递增,
当x<0时,f′(x)<0,函数单调递减,
若x1>x2,x1+x2>0?x1>-x2,x1>x2
即x1>|x2|>0,根据函数的单调性即偶函数
f(x1)>f(|x2|)=f(x2
∴f(x1)>f(x2
故选A.
点评:本田综合考查了利用导数判定函数的单调性及偶函数的性质:对称区间上的单调性相反,利用函数的相关性质解题的关键是熟练掌握函数的性质并能灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义在(-1,0)内的函数f(x)=log2a(x+1)>0,则a的取值范围是(  )
A、(0,
1
2
)
B、(0,
1
2
]
C、(
1
2
,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f(
a2+b25
)
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的a的取值范围是(0,
1
2
);
⑥将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2

按从大到小排列正确的是z>x>y,其中正确的有
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在{x|x>0}上的增函数,且f(
x
y
)=f(x)-f(y)

(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+a)+1过点(4,4).
(1)求实数a;
(2)将函数f(x)的图象向下平移1个单位,再向右平移a个单位后得到函数g(x)图象,设函数g(x)关于y轴对称的函数为h(x),试求h(x)的解析式;
(3)对于定义在(-4,0)上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2>h(x)m-1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案