如图,己知直线l与抛物线
相切于点P(2,1),且与x轴交于点A,定点B(2,0).![]()
(1)若动点M满足
,求点M轨迹C的方程:
(2)若过点B的直线
(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
的中心在原点
,焦点在
轴上,短轴长为
,离心率为
.
(I)求椭圆
的方程;
(II)
为椭圆
上满足
的面积为
的任意两点,
为线段
的中点,射线
交椭圆
与点
,设
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
(
且
为常数),
为其焦点.![]()
(1)写出焦点
的坐标;
(2)过点
的直线与抛物线相交于
两点,且
,求直线
的斜率;
(3)若线段
是过抛物线焦点
的两条动弦,且满足
,如图所示.求四边形
面积的最小值
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:![]()
过点
,上、下焦点分别为
、
,
向量
.直线
与椭圆交于
两点,线段
中点为
.
(1)求椭圆
的方程;
(2)求直线
的方程;
(3)记椭圆在直线
下方的部分与线段
所围成的平面区域(含边界)为
,若曲线
与区域
有公共点,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
:
的右焦点为
且
为常数,离心率为
,过焦点
、倾斜角为
的直线
交椭圆
与M,N两点,
(1)求椭圆
的标准方程;
(2)当
=
时,
=
,求实数
的值;
(3)试问
的值是否与直线
的倾斜角
的大小无关,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(1)求抛物线的方程;
(2)设点
是抛物线上的两点,
的角平分线与
轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线
过点
,求弦
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,焦点在
轴上,其左、右焦点分别为
、
,短轴长为
,点
在椭圆
上,且满足
的周长为6.
(Ⅰ)求椭圆
的方程;;
(Ⅱ)设过点
的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使
恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
,![]()
(1)化
的方程为普通方程,并说明它们分别表示什么曲线?
(2)若
上的点P对应的参数为
,Q为
上的动点,求PQ的中点M到直线
的距离的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面上动点P(
)及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为
、
且![]()
(I)求动点P所在曲线C的方程。
(II)设直线
与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线
的距离。(O为坐标原点)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com