已知圆C:
,其中
为实常数.
(1)若直线l:
被圆C截得的弦长为2,求
的值;
(2)设点
,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求
的取值范围.
(1)
;(2)
.
解析试题分析:(1)圆C的圆心为
,半径为3,由此可得圆心到直线的距离
.
再由点到直线的距离公式得:
解之即得
.
(2)显然满足
的M点也形成一轨迹,由
可得M点轨迹方程为
.所以点M在以D(-1,0)为圆心,2为半径的圆上.
又点M在圆C上,所以圆C与圆D有公共点,从而
,由此即得
的取值范围.
试题解析:(1)由圆的方程知,圆C的圆心为
,半径为3 1分
设圆心C到直线
的距离为
,因为直线被圆C截得的弦长为2,所以![]()
所以
.
再由点到直线的距离公式得:
,解之得
5分
(2)设
,由
得:
即
7分
所以点M在以D(-1,0)为圆心,2为半径的圆上.
又点M在圆C上,所以圆C与圆D有公共点,从而
9分
即
,解得![]()
即
.11分
故
的取值范围为
. 12分
考点:直线与圆的方程.
科目:高中数学 来源: 题型:解答题
已知圆C1:x2+y2-2y=0,圆C2:x2+(y+1)2=4的圆心分别为C1,C2,P为一个动点,且直线PC1,PC2的斜率之积为-
.
(1)求动点P的轨迹M的方程;
(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知圆心在
轴上,半径为
的圆
位于
轴的右侧,且与
轴相切,
(Ⅰ)求圆
的方程;
(Ⅱ)若椭圆
的离心率为
,且左右焦点为
,试探究在圆
上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的
点?并说明理由(不必具体求出这些点的坐标)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点M(3,1),直线
与圆
。
(1)求过点M的圆的切线方程;
(2)若直线
与圆相切,求a的值;
(3)若直线
与圆相交与A,B两点,且弦AB的长为
,求a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
和圆
:
.![]()
(Ⅰ)过点
的直线
被圆
所截得的弦长为
,求直线
的方程;
(Ⅱ)试探究是否存在这样的点
:
是圆
内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积
?若存在,求出点
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆A过点
,且与圆B:![]()
关于直线
对称.
(1)求圆A的方程;
(2)若HE、HF是圆A的两条切线,E、F是切点,求
的最小值。
(3)过平面上一点
向圆A和圆B各引一条切线,切点分别为C、D,设
,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,
(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆
有公共点的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
,直线
过定点
.
(1)求圆心
的坐标和圆的半径
;
(2)若
与圆C相切,求
的方程;
(3)若
与圆C相交于P,Q两点,求三角形
面积的最大值,并求此时
的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com