精英家教网 > 高中数学 > 题目详情
函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,
OM
ON
的取值范围为(  )
分析:判断函数的奇偶性,推出不等式,利用约束条件画出可行域,然后求解数量积的范围即可.
解答: 解:函数y=f(x-1)的图象关于点(1,0)对称,
所以f(x)为 奇函数.
∴f(x2-2x)≤f(-2y+y2)≤0,
∴x2-2x≥-2y+y2
x2-2x≥y2-2y
1≤x≤4

(x-y)(x+y-2)≥0
1≤x≤4
,画出可行域如图,
可得
OM
ON
=x+2y∈[0,12].
故选D.
点评:本题考查函数的奇偶性,线性规划的应用,向量的数量积的知识,是综合题,考查数形结合与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装批发商场经营的某种服装,进货成本40元/件,对外批发价定为60元/件.该商场为了鼓励购买者大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,再降低0.1元/件,但最低价不低于50元/件.
(1)问一次购买多少件时,售价恰好是50元/件?
(2)设购买者一次购买x件,商场的利润为y元(利润=销售总额-成本),试写出函数y=f(x)的表达式.并说明在售价高于50元/件时,购买者一次购买多少件,商场利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)设M(a,ka),N(b,-kb),(a>0,b>0),求P(x,y)(x>0,0<y<kx)分别到直线OM,ON的距离.
(2)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(3)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y=f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y=f(x)所满足的条件;
(Ⅱ)试分析函数模型y=4lgx-3是否符合奖励方案的要求?并说明你的理由.

查看答案和解析>>

同步练习册答案