【题目】把一副三角板ABC与ABD摆成如图所示的直二面角D﹣AB﹣C,(其中BD=2AD,BC=AC)则异面直线DC,AB所成角的正切值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
【答案】D
【解析】解:以A为原点,AB、AD所在直线分别为y轴和x轴,建立如图坐标系,
Rt△ABD中,AD:AB:BD=1:
:2,
Rt△ABC中,AC:AB:BC=1:
:1,
设AD=
,则AB=
,BC=AC=
,
则A(0,0,0),B(0,﹣
,0),C(
,﹣
,0),D(0,0,
),
∴
=(0,﹣
,0),
=(
,﹣
,﹣
),
设异面直线DC,AB所成角为θ,
则cosθ=
=
=
,
∴sinθ=
=
,
∴异面直线DC,AB所成角的正切值tanθ=
=
.
故选:D.![]()
【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】某班20名同学某次数学测试的成绩可绘制成如图茎叶图.由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.
![]()
(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩
(同一组中的数据用改组区间的中点值作代表);
(3)根据茎叶图计算出的全班的平均成绩为
,并假设
,且
取得每一个可能值的机会相等,在(2)的条件下,求概率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.
(1)试问此次参赛的学生总数约为多少人?
(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?
附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列各条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍且经过点A(2,0);
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,CD和SC的中点.求证: ![]()
(1)直线EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com