精英家教网 > 高中数学 > 题目详情

已知点到直线的距离相等,则实数的值等于(   )

A.                B.              C.        D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知对于任意实数k,直线(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒过定点F.设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为2+
3

(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:x2+y2=r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两条渐进线过坐标原点,且与以点为圆心,为半径的圆相且,双曲线的一个顶点与点关于直线对称,设直线过点,斜率为

(Ⅰ)求双曲线的方程;

(Ⅱ)当时,若双曲线的上支上有且只有一个点到直线的距离为,求斜率的值和相应的点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,已知曲线由圆弧和圆弧相接而成,两相接点均在直线上.圆弧的圆心是坐标原点,半径为13;圆弧过点(29,0).

(Ⅰ)求圆弧的方程.

(Ⅱ)曲线上是否存在点,满足?若存在,指出有几个这样的点;若不存在,请说明理由.

(Ⅲ)已知直线与曲线交于两点,当=33时,求坐标原点到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分16分)

如图,在平面直角坐标系中,已知曲线由圆弧和圆弧相接而成,两相接点均在直线上.圆弧的圆心是坐标原点,半径为13;

圆弧过点(29,0).

(Ⅰ)求圆弧的方程.

(Ⅱ)曲线上是否存在点,满足?若存在,

指出有几个这样的点;若不存在,请说明理由.

(Ⅲ)已知直线与曲线交于两点,

=33时,求坐标原点到直线的距离.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省杭州七校高二第二学期期中联考文科数学试卷(解析版) 题型:解答题

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

同步练习册答案