精英家教网 > 高中数学 > 题目详情
定义在[-1,1]上的奇函数f(x)满足f(1)=1,且当a、b∈[-1,1],a+b≠0时,有
f(a)+f(b)a+b
>0

(1)证明:f(x)是[-1,1]上的增函数;
(2)若f(x)≤m2+2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,求m的取值范围.
分析:(1)利用函数单调性的定义进行证明:在区间[-1,1]任取x1、x2,且x1<x2,利用函数为奇函数的性质结合已知条件中的分式,可以证得f(x1)-f(x2)<0,所以
函数f(x)是[-1,1]上的增函数.
(2)根据函数f(x)≤m2+2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,说明f(x)的最大值1小于或等于右边,因此先将右边看作a的函数,m为参数系数,解不等式组,即可得出m的取值范围.
解答:解:(1)任取x1、x2∈[-1,1],且x1<x2
则f(x1)-f(x2)=f(x1)+f(-x2
f(x1)+f(-x2)
x1+(-x2)
>0

f(x1)+f(-x2)
x1+(-x2)
[x1+(-x2)]
(2分)
∵x1+(-x2)<0,
∴f(x1)-f(x2)<0.
则f(x)是[-1,1]上的增函数. (5分)
(2)要使f(x)≤m2+2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,
只须f(x)max≤m2+2am+1,即1≤m2+2am+1对任意的a∈[-1,1]恒成立,
亦即m2+2am≥0对任意的a∈[-1,1]恒成立.令g(a)=2ma+m2
只须
g(-1)=-2m+m2≥0
g(1)=2m+m2≥0

解得m≤-2或m≥2或m=0,即为所求.       (12分)
点评:本题考查了抽象函数的单调性与函数的值域、不等式恒成立等知识点,属于中档题,解题时应该注意题中的主元与次元的处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的奇函数f(x),当-1≤x<0时,f(x)=-
2x
4x+1

(Ⅰ)求f(x)在[-1,1]上解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性,并给予证明;
(Ⅲ)当x∈(0,1]时,关于x的方程
2x
f(x)
-2x+λ=0
有解,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:江苏省泰州市中学高三数学一轮复习过关测试卷:函数(1)(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

同步练习册答案