精英家教网 > 高中数学 > 题目详情
现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3
(1)求出x 与 y 的关系式;
(2)求该铁皮盒体积V的最大值.

【答案】分析:(1)根据一张长为80cm,宽为60cm的长方形铁皮ABCD,可得得x2+4xy=4800,进而可确定x 与 y 的关系式;
(2)铁皮盒体积,求导函数,确定函数的极值,极大值,也是最大值.
解答:解:(1)由题意得x2+4xy=4800,
,0<x<60.  (6分)
(2)铁皮盒体积,(10分)
,令V′(x)=0,得x=40,(12分)
因为x∈(0,40),V′(x)>0,V(x)是增函数;x∈(40,60),V'(x)<0,V(x)是减函数,
所以,在x=40时取得极大值,也是最大值,其值为32000cm3
答:该铁皮盒体积V的最大值是32000cm3.         (14分)
点评:本题考查函数模型的构建,考查导数知识的运用,单峰函数极值就是最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏一模)现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3
(1)求出x 与 y 的关系式;
(2)求该铁皮盒体积V的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省苏北四市(徐、连、淮、宿)高三元月调研测试数学试卷 题型:解答题

(本小题满分14分)现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3

 

 

(1)求出x 与 y 的关系式;

(2)求该铁皮盒体积V的最大值;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省徐州市高三(上)第一次质量检测数学试卷(解析版) 题型:解答题

现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3
(1)求出x 与 y 的关系式;
(2)求该铁皮盒体积V的最大值.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省苏北四市高考数学一模试卷(解析版) 题型:解答题

现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3
(1)求出x 与 y 的关系式;
(2)求该铁皮盒体积V的最大值.

查看答案和解析>>

同步练习册答案