【题目】已知函数![]()
(1)讨论函数
的单调性;
(2)若
有两个零点,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=
x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)·f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(
,e)内有两个零点,求正实数a的取值范围;
(3)求证:当x>0时,
.(说明:e是自然对数的底数,e=2.71828…)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
(
),直线
的参数方程为
(
为参数).
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)己知点
,直线
与曲线
交于
,
两点,若
,
,
成等比数列,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与上、下顶点构成直角三角形,以椭圆
的长轴长为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点且不平行于
轴的动直线与椭圆
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C1的极坐标方程是
,在以极点为原点O,极轴为x轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy中,曲线C2的参数方程为
(θ为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程;
(2)将曲线C2经过伸缩变换
后得到曲线C3,若M,N分别是曲线C1和曲线C3上的动点,求|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是抛物线
的焦点,过点
且与坐标轴不垂直的直线交抛物线于
、
两点,交抛物线的准线于点
,其中
,
.过点
作
轴的垂线交抛物线于点
,直线
交抛物线于点
.
![]()
(1)求
的值;
(2)求四边形
的面积
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
为两个平面,命题
:
的充要条件是
内有无数条直线与
平行;命题
:
的充要条件是
内任意一条直线与
平行,则下列说法正确的是( )
A.“
”为真命题B.“
”为真命题
C.“
”为真命题D.“
”为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com