精英家教网 > 高中数学 > 题目详情

【题目】是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则

A.B.C.D.

【答案】B

【解析】

设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.

由题意设四面体的棱长为,设的中点,

为坐标原点,以轴,以轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系

则可得,取的三等分点如图,

所以

由题意设

都是等边三角形,的中点,

平面为平面的一个法向量,

因为与平面所成角为定值,则

由题意可得

因为的轨迹为一段抛物线且为定值,则也为定值,

,可得,此时,则.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当.

①求函数处的切线方程;

②定义其中,求

2)当时,设(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件的最小值为7,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知参赛号码为1~4号的四名射箭运动员参加射箭比赛。

(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;

(2)记1号,2号射箭运动员,射箭的环数为所有取值为0,1,2,3...,10)。

根据教练员提供的资料,其概率分布如下表:

0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0.06

0.04

0.06

0.3

0.2

0.3

0.04

0

0

0

0

0.04

0.05

0.05

0.2

0.32

0.32

0.02

  1. 若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;
  2. 判断1号,2号射箭运动员谁射箭的水平高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.65.0之间的学生数为b,则ab的值分别为 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处的切线与直线平行,求的值及的单调区间;

2)当时,求证:在定义域内有且只有两个极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数6个零点,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,点为左焦点,过点轴的垂线交椭圆两点,且.

(1)求椭圆的方程;

(2)在圆上是否存在一点,使得在点处的切线与椭圆相交于两点满足?若存在,求的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年“两会”报告指出,5G在下半年会零星推出,2020年有望实现大范围使用。随着移动通信产业的发展,全球移动宽带(,简称)用户数已达54亿,占比70%(用户比例简称渗透率),但在部分发展中国家该比例甚至低于20%。

基站覆盖率小于80%

基站覆盖率大于80%

总计

渗透率低于20%

渗透率高于20%

总计

(1)现对140个发展中国家进行调查,发现140个发展中国家中有25个国家MBB基站覆盖率小于80%,其中渗透率低于20%的有15个国家,而基站覆盖率大于80%的国家中渗透率低于20%的有25个国家.由以上统计数据完成下面列联表,并判断是否有99%的把握认为渗透率与基站覆盖率有关;

(2)基站覆盖率小于80%,其中渗透率低于20%的国家中手机占居民人均收入比例和资费居民人均收入比例如茎叶图所示,请根据茎叶图求这些国家中的手机占居民人均收入比例的中位数和资费居民人均收入比例平均数;

(3)根据以上数据判断,若要提升渗透率,消除数字化鸿沟,把数字世界带入每个人,需要重点解决哪些问题。

附:参考公式:;其中

临界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案