精英家教网 > 高中数学 > 题目详情

【题目】若函数的最小正周期为.

1)求的值;

2)将函数的图像向左平移个单位,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图像,求函数的单调递减区间.

【答案】1;(2 .

【解析】试题分析:(1)利用二倍角公式、和差角公式化简函数式,然后利用公式求的值;(2)利用图象变换知识得到g(x) =sin+.,令2kπ+≤2kπ+(kZ)得到单调减区间.

试题解析:

=sin2ωx+cosωxsinωx

=+sin2ωx

=sin2ωx-cos2ωx+

=sin(2ωx-)+.

因为函数f(x)的最小正周期为π,且ω>0,

所以=π,

解得ω=1.

(2)将函数y=f(x)的图象向左平移个单位,得到函数f(x+)的图象,

再将所得图形各点的横坐标伸长到原来的4倍,纵坐标不变,

得到函数y=f(+),即函数y=g(x)的图象.

由(1)知f(x)=sin(2x-)+

所以g(x)=f(+)=sin[2(+)-]+=sin+.

2kπ+≤2kπ+(kZ),

解得4kπ+π≤x≤4kπ+3π(kZ),

因此函数y=g(x)的单调递减区间为[4kπ+π,4kπ+3π](kZ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为 分别是它的左、右焦点,且存在直线,使关于的对称点恰好是圆 )的一条直径的两个端点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与抛物线)相交于两点,射线与椭圆分别相交于点.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只要将y=sinx(x∈R)的图象上所有的点(
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内一动点与两定点连线的斜率之积等于.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设直线 )与轨迹交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化阶段,“老有所依”也是政府的民生工程.为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表.

(1)若采用分层抽样的方法,再从样本中不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

(2)据统计该市大约有的户籍老人无固定收入,且在各健康状况人群中所占比例相同,政府计划每月为这部分老人发放生活补贴,标准如下:

①80岁及以上长者每人每月发放生活补贴200元;

②80岁以下老人每人每月发放生活补贴120元;

③不能自理的老人每人每月额外再发放生活补贴100元.

若用频率估计概率,设任意户籍老人每月享受的生活补贴为元,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是四棱锥,为正三角形,.

(1)求证:

(2)若,M为线段AE的中点,求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面,底面为矩形, ,该四棱锥的外接球的体积为,则到平面的距离为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量 =(3,2)表示出来的是(
A. =(0,0), =(1,2)
B. =(﹣1,2), =(5,﹣2)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某金匠以黄金为原材料加工一种饰品,经多年的数据统计得知,该金匠平均每加5 个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响,以频率估计概率.

(1)若金金匠加工4个饰品,求其中废品的数量不超过1的概率;

(2)若该金匠加工了 3个饰品,求他所获利润的数学期望.

(两小问的计算结果都用分数表示)

查看答案和解析>>

同步练习册答案