精英家教网 > 高中数学 > 题目详情

设点是椭圆上一动点,是椭圆的两个焦点,的内切圆半径为,则当点点轴上方时,点的纵坐标为(     )

A.2                 B.4                C.                D.

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.
(1)若椭圆C过点(
5
,0)
,且焦距为4,求“伴随圆”的方程;
(2)如果直线x+y=3
2
与椭圆C的“伴随圆”有且只有一个交点,那么请你画出动点Q(a,b)轨迹的大致图形;
(3)已知椭圆C的两个焦点分别是F1(-
2
,0)、F2
2
,0),椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3
.设点P是椭圆C的“伴随圆”上的动点,过点P作直线l1、l2使得l1、l2与椭圆C都各只有一个交点,且l1、l2分别交其“伴随圆”于点M、N.当P为“伴随圆”与y轴正半轴的交点时,求l1与l2的方程,并求线段|
MN
|
的长度.

查看答案和解析>>

科目:高中数学 来源:上海市模拟题 题型:解答题

已知椭圆的左、右焦点分别为, 点是椭圆的一个顶点,△是等腰直角三角形.
(1)求椭圆的方程;
(2)设点是椭圆上一动点,求线段的中点的轨迹方程;
(3)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,探究:直线是否过定点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.

(1)若椭圆过点,且焦距为,求“伴随圆”的方程;

(2)如果直线与椭圆的“伴随圆”有且只有一个交点,那么请你画出动点 轨迹的大致图形;

(3)已知椭圆的两个焦点分别是

椭圆上一动点满足.设点是椭圆的“伴随圆”上的动点,过点作直线使得与椭圆都各只有一个交点,且分别交其“伴随圆”于点

 当为“伴随圆”与轴正半轴的交点时,求的方程,并求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.

(1)若椭圆过点,且焦距为,求“伴随圆”的方程;

(2)如果直线与椭圆的“伴随圆”有且只有一个交点,那么请你画出动点 轨迹的大致图形;

(3)已知椭圆的两个焦点分别是

椭圆上一动点满足.设点是椭圆的“伴随圆”上的动点,过点作直线使得与椭圆都各只有一个交点,且分别交其“伴随圆”于点

研究:线段的长度是否为定值,并证明你的结论.

查看答案和解析>>

同步练习册答案