某家具厂生产一种儿童用组合床柜的固定成本为20000元,每生产一组该组合床柜需要增加投入100元,已知总收益满足函数:
,其中
是组合床柜的月产量.
(1)将利润
元表示为月产量
组的函数;
(2)当月产量为何值时,该厂所获得利润最大?最大利润是多少?(总收益=总成本+利润).
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)求函数
在点(0,f(0))处的切线方程;
(2)求函数
单调递增区间;
(3)若![]()
∈[1,1],使得
(e是自然对数的底数),求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
两城相距
,在两地之间距
城
处
地建一核电站给
两城供电.为保证城市安全,核电站距城市距离不得少于
.已知供电费用(元)与供电距离(
)的平方和供电量(亿度)之积成正比,比例系数
,若
城供电量为
亿度/月,
城为
亿度/月.
(Ⅰ)把月供电总费用
表示成
的函数,并求定义域;
(Ⅱ)核电站建在距
城多远,才能使供电费用最小,最小费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(其中
是实数常数,
)
(1)若
,函数
的图像关于点(—1,3)成中心对称,求
的值;
(2)若函数
满足条件(1),且对任意
,总有
,求
的取值范围;
(3)若b=0,函数
是奇函数,
,
,且对任意
时,不等式
恒成立,求负实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,点
、
在函数
的图象上,
点
在函数
的图象上,设![]()
.
(1)求数列
的通项公式;
(2)记
,求数列
的前
项和为
;
(3)已知
,记数列
的前
项和为
,数列
的前
项和为
,试比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设命题p:f(x)=
在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com