精英家教网 > 高中数学 > 题目详情
(2013•东至县一模)如果对于函数f(x)定义域内任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中的最大值叫做f(x)的下确界,下列函数中,有下确界的所有函数是
①③④
①③④

①f(x)=sinx;
②f(x)=lgx;
③f(x)=ex
④f(x)=
1,x>0
0,x=0
-1,x<0
分析:先理解题目所给的新定义,然后针对所给的四个函数逐一进行验证即可.
解答:解:对f(x)=sinx≥-1 在R上恒成立,所以此函数有下确界;
对f(x)=lgx∈R在(0,+∞)上恒成立,所以此函数无下确界;
对f(x)=ex∈(0,+∞)在R上恒成立,所以此函数有下确界;
f(x)=
1,x>0
0,x=0
-1,x<0
∈{-1,0,1}在R上恒成立,所以此函数有下确界;
综上可知①③④对应的函数都有下确界.
故答案为:①③④.
点评:本题考查函数的最值和新定义,在解答的过程当中充分体现了新定义问题的特点、问题转化的思想以及函数求最值的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东至县一模)函数y=
1-(
1
2
)
x
的定义域是
[0,+∞)
[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)已知tanx=
1
3
,则cos2x=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=
3
asinC-ccosA

(1)求角A;
(2)若a=2,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)若直角坐标平面内M、N两点满足:
①点M、N都在函数f(x)的图象上;
②点M、N关于原点对称,则称这两点M、N是函数f(x)的一对“靓点”.
已知函数f(x)=
3x,x≤0
x-3,x>0
则函数f(x)有
对“靓点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)若函数f(x)=a(x+1)p(x-1)q(a>0)在区间[-2,1]上的图象如图所示,则p,q的值可能是(  )

查看答案和解析>>

同步练习册答案