精英家教网 > 高中数学 > 题目详情

(本题满分10分)

如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;

(2)求二面角ABEC的余弦值.

 

【答案】

(1) (2)

【解析】

试题分析:解:(I)以O为原点,OBOCOA分别为xyz轴建立空间直角坐标系.

则有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).

 

所以,cos<>.          ……………………3分

由于异面直线BE与AC所成的角是锐角,

所以,异面直线BEAC所成角的余弦值是.      ……………………5分

(II)

设平面ABE的法向量为

则由,得

又因为

所以平面BEC的一个法向量为n2=(0,0,1),

所以. ……………………8分

由于二面角ABEC的平面角是n1n2的夹角的补角,

所以,二面角ABEC的余弦值是.……………………10分

考点:本试题考查了异面直线的角和二面角的求解。

点评:对于角的求解问题,一般分为三步进行,一作,二证,三解答。因此要掌握角的表示,结合定义法和性质来分析得到角,进而求解,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 17.本题满分10分已知函数的图象在y轴上的截距为,相邻的两个最值点是(1)求函数;(2)设,问将函数的图像经过怎样的变换可以得到 的图像?(3)画出函数在区间上的简图.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分10分)

(Ⅰ)设,求证:

(Ⅱ)设,求证:三数中至少有一个不小于2.

 

查看答案和解析>>

科目:高中数学 来源:2014届河南省高二上学期期末考试理科数学试卷(解析版) 题型:解答题

(本题满分10分)

如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,

⑴求证:A1C⊥平面BDE;

⑵求A1B与平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省扬州市宝应县高三下学期期初测试数学试卷 题型:解答题

(本题满分10分)

如图,已知正三棱柱的所有棱长都为2,为棱的中点,

(1)求证:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年辽宁省高二上学期期末考试数学理卷 题型:解答题

(本题满分10分)

如图,要计算西湖岸边两景点的距离,由于地形的限制,需要在岸上选取两点,现测得 ,,求两景点的距离(精确到0.1km).参考数据:  

 

 

查看答案和解析>>

同步练习册答案