精英家教网 > 高中数学 > 题目详情
(为常数).函数定义为:对每个给定的实数

(Ⅰ)求对所有实数成立的充要条件(用表示);

(Ⅱ)设为两实数,满足,且,若

求证:函数在区间上的单调增区间的长度和为(闭区间的长度定义为).

本小题主要考查函数的概念、性质、图象以及命题之间的关系等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.

解:(1)由的定义可知,(对所有实数)等价于

(对所有实数)这又等价于,即

对所有实数均成立.        (*)

  由于,故其最大值为

  故(*)等价于,即,这就是所求的充分必要条件。

(2)分两种情形讨论

     (i)当时,由(1)知(对所有实数),

则由易知

再由的单调性可知,

函数在区间上的单调增区间的长度

(参见示意图1)

(ii)时,不妨设,则,于是

   当时,有,从而

时,有

从而  ;

时,,及,由方程

      解得图象交点的横坐标为

                          ⑴显然

这表明之间。由⑴易知

 

综上可知,在区间上,   (参见示意图2)

故由函数的单调性可知,在区间上的单调增区间的长度之和为,由于,即,得

          ⑵

故由⑴、⑵得 

综合(i)(ii)可知,在区间上的单调增区间的长度和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=In(ax+1)+
1
2
x2
-
x
a
+b(a,b为常数,a>0)
(1)若函数f(x)的图象在点(0,f(0))处的切线方程y=2,求a、b的值;
(2)当b=2时若函数f(x)在区间[0,+∞)上的最小值为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究性学习小组研究函数f(x)=ax3+bx(a≠0,a,b为常数)的 性质:
(Ⅰ)甲同学得到如下表所示的部分自变量x及其对应函数值y的近似值(精确到0.01):
x -1 -0.72 -0.44 -0.16 0.12 0.4
y的近似值 4.00 1.15 0.02 -0.14 0.11 0.08
请你根据上述表格中的数据回答下列问题:
(i)函数f(x)在区间(0.4,0.44)内是否存在零点,写出你的判断并加以证明;
(ii)证明:函数f(x)在区间(-∞,-0.3)上单调递减;
(Ⅱ)乙同学发现对于函数f(x)图象上的两点A(-1,4),B(t,f(t))(-1<t<2),存在m∈(-1,t),使f'(m)的值恰为直线AB的斜率,请你判断乙同学的结论是否正确?若正确,请给出证明并确定m的个数,若不正确,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。已知函数时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;若函数上是以3为上界函数值,求实数的取值范围;若,求函数上的上界T的取值范围。

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

同步练习册答案