精英家教网 > 高中数学 > 题目详情
已知f(x)=3cos2ωx+
3
sinωxcosωx+a(ω>0)
,且函数f(x)的图象相邻两条对称轴之间的距离为
π
2

(1)求ω的值,
(2)若当x∈[
π
6
12
]
时,f(x)的最小值为2,求a的值,
(3)求函数f(x)在区间[0,
π
2
]
上的递减区间.
分析:(1)通过二倍角公式以及两角和的正弦函数,化简函数为一个角的一个三角函数的形式,通过函数的周期求出ω的值,
(2)通过x∈[
π
6
12
]
,求出相位的范围,利用f(x)的最小值为2,即可求a的值,
(3)通过函数的解析式,利用正弦函数的单调减区间求出函数f(x)在区间[0,
π
2
]
上的递减区间.
解答:解:(1)f(x)=3cos2ωx+
3
sinωxcosωx+a

=
1
2
(3+3cos2ωx)+
3
2
sin2ωx+a
=
3
sin(2ωx+
π
3
)+a+
3
2

因为函数f(x)的图象相邻两条对称轴之间的距离为
π
2

所以函数的周期为:π.
所以ω=
=1,ω的值为1.
(2)因为x∈[
π
6
12
]
,所以2x+
π
3
[
3
6
]

∵f(x)的最小值为2,
-
3
2
+a+
3
2
=2
,∴a=
1
2
+
3
2

(3)由(1)可知函数f(x)=
3
sin(2x+
π
3
)+a+
3
2

由2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈Z,解得kπ+
π
12
≤x≤kπ+
12

所以在区间[0,
π
2
]
上的递减区间为:[
π
12
π
2
]
点评:本题考查二倍角公式的应用,两角和的正弦函数,正弦函数的单调性,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=3sinωxcosωx-
3
cos2ωx+2sin2(ωx-
π
12
)+
3
2
(其中ω>0)的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=
2
,f(A)=1
,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(
3
cos2ωx,sinωx),
b
=(1,cosωx)
(其中ω>0),已知f(x)=
a
b
-
3
2
且f(x)最小正周期为2π
(1)求ω的值及y=f(x)的表达式;
(2)设a∈(
π
6
3
),β∈(-
6
,-
π
3
)
f(α)=
3
5
,f(β)=-
4
5
求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=3sinωxcosωx-
3
cos2ωx+2sin2(ωx-
π
12
)+
3
12
(ω>0)

(1)求函数f(x)值域;(2)若f(x)周期为π,求ω并写出该函数在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=3sinωxcosωx-
3
cos2ωx+2sin2(ωx-
π
12
)+
3
12
(ω>0)

(1)求函数f(x)值域;
(2)若对任意的a∈R,函数y=f(x)在(a,a+π]上的图象与y=1有且仅有两个不同的交点,试确定ω的值(不必证明)并写出该函数在[0,π]上的单调区间.

查看答案和解析>>

同步练习册答案